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Contemporary Bayesian confirmation theorists measure degree of
(incremental) confirmation using a variety of non-equivalent rele-
vance measures. As a result, a great many of the arguments sur-
rounding quantitative Bayesian confirmation theory are implicitly
sensitive to choice of measure of confirmation. Such arguments are
enthymematic, since they tacitly presuppose that certain relevance
measures should be used (for various purposes) rather than other
relevance measures that have been proposed and defended in the
philosophical literature. I present a survey of this pervasive class of
Bayesian confirmation-theoretic enthymemes, and a brief analysis of
some recent attempts to resolve the problem of measure sensitivity.

1 Preliminaries.

1.1 Terminology, Notation, and Basic Assumptions

The present paper is concerned with the degree of incremental confirmation
provided by evidential propositions E for hypotheses under test H, given back-
ground knowledge K, according to relevance measures of degree of confirmation
¢. We say that ¢ is a relevance measure of degree of confirmation if and only if
¢ satisfies the following constraints, in cases where E confirms, disconfirms, or
is confirmationally irrelevant to H, given background knowledge K.
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11 will not defend the qualitative Bayesian relevance notion of confirmation here (I will just
assume it, as an underpinning for the quantitative issues I discuss below). Nor will I argue
for the existence of a ‘rational’ probability function Pr of the kind required to give Bayesian
confirmation theory its (objective) normative teeth. For a nice recent discussion of many of
the controversies surrounding qualitative Bayesian confirmation theory, see Maher 1996.

>0 if Pr(H|E&K) > Pr(H|K),
(R) ¢(H,E|K){ <0 ifPr(H|E&K) <Pr(H|K),
=0 if Pr(H|E&K) =Pr(H|K).

T T

I will restrict my attention to the following four relevance measures of degree
of confirmation: the difference measure d, the log-ratio measure r, the log-
likelihood ratio measure [, and Carnap’s (1962, §67) relevance measure t. The
three measures d, r, and [ are representative of the varieties of quantitative
Bayesian confirmation theory that are currently being defended in the philo-
sophical literature.? Carnap’s measure t (which is a very close relative of the
difference measure d) is included here to illustrate that even relevance measures
which are very closely related to each other can diverge in important and subtle
ways. The measures d, 7, [, and t are defined as follows.?

d(H,E|K) =4 Pr(H|E&K) — Pr(H| K)

r(H,E|K) =4 log [%]
I(H,E| K) =g log {%]

t(H,E | K) =4 Pr(H& E&K) - Pr(K) — Pr(H & K) - Pr(E& K)
= Pr(K) -Pr(E&K) -d(H,E| K)*

1.2 A General Overview of the Problem

Many arguments surrounding quantitative Bayesian confirmation theory pre-
suppose that the degree to which E incrementally confirms H, given K should
be measured using some relevance measure (or, class of relevance measures) ¢,

2 Many relevance measures have been proposed over the years. For a nice survey, see Kyburg
1983. The three relevance measures d, r, and [ have had the most loyal following in recent
years. Advocates of d include Earman (1992), Eells (1982), Gillies (1986), Jeffrey (1992), and
Rosenkrantz (1994). Advocates of r include Horwich (1982), Keynes (1921), Mackie (1969),
Milne (1996), and Schlesinger (1995). Advocates of ! include Fitelson (1998b), Good (1984),
Heckerman (1988), Horvitz and Heckerman (1986), Pearl (1988), and Schum (1994).

3Qverbars are used to express negations of propositions (i.e. ‘X’ stands for ‘not-X’). Log-
arithms (of any arbitrary base greater than 1) of the ratios Pr(H |E & K)/Pr(H| K) and
Pr(E|H & K)/Pr(E| H & K) are taken to insure that (i) r and [ satisfy R, and (éi) r and [
are additive in various ways. Not all advocates of r or [ adopt this convention (e.g. Horwich
(1982)). But, because logarithms are monotonic increasing on (0,+00), defining r and ! in
this way will not result in any loss of (or gain in) generality in my argumentation.

41t is perhaps easiest to think of Carnap’s t as a kind of covariance measure. Indeed, when
K is tautologous, we have: v(H,E | K) =Pr(H& E& K)-Pr(K)—Pr(H& K) -Pr(E& K) =
Pr(H & E) — Pr(H) - Pr(E) = Cov(H, E). In general, t(H, E | K) = Pr(K)? - Cov(H,E| K).



where ¢ is taken to have certain quantitative properties. We say that an ar-
gument A of this kind is sensitive to choice of measure if A’s validity varies,
depending on which of the four relevance measures d, r, [, or t is used in A. If
A is valid regardless of which of the four relevance measures d, r, [, or t is used
in A, then A is said to be insensitive to choice of measure (or, simply, robust).’

Below, I will show that seven well-known arguments surrounding contem-
porary Bayesian confirmation theory are sensitive to choice of measure. I will
argue that this exposes a weakness in the theoretical foundation of Bayesian con-
firmation theory which must be shored-up. I call this problem the problem of
measure sensitivity. After presenting a survey of measure sensitive arguments, 1
will examine some recent attempts to resolve the measure sensitivity problem. I
will argue that, while some progress has been made toward this end, we still do
not have an adequate or a complete resolution of the measure sensitivity prob-
lem. Specifically, I will show that the many defenders of the difference measure
have failed to provide compelling reasons to prefer d over the two alternative
measures [ and v. Thus, a pervasive problem of measure sensitivity still remains
for many modern advocates and practitioners of Bayesian confirmation theory.

2 Contemporary Examples of the Problem

It is known (although, apparently, not that widely) that no pair of the four
measures d, T, I, and v is ordinally equivalent. That is, each of these four mea-
sures can impose distinct orderings over sets of hypotheses and collections of
evidence.® T have not seen many discussions concerning the measure sensitiv-
ity of concrete arguments surrounding Bayesian confirmation theory.” In this
section, I will show that a wide variety of well-known arguments surrounding
Bayesian confirmation theory are sensitive to choice of measure.

2.1 Gillies’s Rendition of the Popper-Miller Argument

Gillies (1986) reconstructs the infamous argument of Popper and Miller (1983)
for the “impossibility of inductive probability” in such a way that it trades
essentially on the following additivity property of the difference measure d:

1) d(H,BE|K)=d(HV E,E|K)+d(HV E,E| K).

50One can invent more or less stringent varieties of measure sensitivity. For instance, one
could call an argument “measure sensitive” (in a very strict sense) if A is valid with respect
to some conceivable relevance measure c¢1, but invalid with respect to some other conceivable
relevance measure cp. Of course, such a strict notion of sensitivity would probably not be very
interesting, since highly gerrymandered relevance measures can undoubtedly be concocted to
suit arbitrary purposes. I am employing a much more restrictive notion of measure sensitivity
which works only with measures that have actually been used and defended in the literature.

6Rosenkrantz (1981, Exercise 3.6) discusses the ordinal non-equivalence of d, r, and [;
and Carnap (1962, §67) talks about some important ordinal differences between t, d, and r
(Carnap does not compare t with ). See Krantz, Luce, Suppes, and Tversky 1971, Ch. 1 for
a theoretical treatment of ordinal equivalence between abstract quantitative measures.

"Two notable exceptions are Redhead 1985 and Mortimer 1988, §11.1.

The details of Gillies’s Popper-Miller argument are not important here. All
that matters for my present purposes is that the additivity property depicted
in (1) is required for Gillies’s rendition of the Popper-Miller argument against
Bayesianism to go through.

Redhead (1985) points out that not all Bayesian relevance measures have this
requisite additivity property. Specifically, Redhead (1985) notes that the log-
ratio measure r does not satisfy (1). It follows that the Popper-Miller argument
is sensitive to choice of measure. Gillies (1986) responds to Redhead’s point
by showing that the log-ratio measure r is not an adequate Bayesian relevance
measure of confirmation. Gillies argues that the ratio measure r is inferior to
the difference measure d because r fails to cope properly with cases of deductive
evidence (see § 3.1 for more on this telling argument against 7). Unfortunately,
however, Gillies fails to recognize that Redhead’s criticism of the Popper-Miller
argument can be significantly strengthened via the following theorem (see the
Appendix for proofs of all Theorems):

Theorem 1. [ does not have the additivity property expressed in (1).8

Moreover, as we will see below in § 3.1, the log-likelihood ratio measure [ is
immune to Gillies’s criticism of r. So, pending some good reason to prefer d
over [, Gillies’s reconstruction of the Popper-Miller argument does not seem to
pose a serious threat to Bayesian confirmation theory (charitably reconstructed).

2.2 Rosenkrantz and Earman on “Irrelevant Conjunction”

Rosenkrantz (1994) offers a Bayesian resolution of “the problem of irrelevant
conjunction” (a.k.a. “the tacking problem”) which trades on the following prop-
erty of the difference measure d:

(2) IHEE, thendH&X,E|K)=Pr(X|H&K)-d(H,E|K).

I won’t bother to get into the details of Rosenkrantz’s argument. It suffices, for
my present purposes, to note that it depends sensitively on property (2). As a
result, Rosenkrantz’s argument does not go through if one uses r or [, instead
of d, to measure degree of confirmation. The proof of the following theorem
demonstrates this strong measure sensitivity of Rosenkrantz’s approach:

Theorem 2. Neither r nor | has the property expressed in (2).°

Consequently, Rosenkrantz’s account of “irrelevant conjunction” is adequate
only if the difference measure d is to be preferred over the two alternative rele-
vance measures 7 and [. Like Gillies, Rosenkrantz (1981, Exercise 3.6) does pro-
vide good reason to prefer d over r (see § 3.1). However, he explicitly admits that
he knows of “no compelling considerations that adjudicate between” the differ-
ence measure d and the log-likelihood ratio measure [. This leaves Rosenkrantz
in a rather uncomfortable position. As I will discuss below, Rosenkrantz is not

8Interestingly, Carnap’s relevance measure t does satisfy (1). This follows straightaway
from (1), and the fact that ¢«(H,E | K) = Pr(K)-Pr(E& K) - d(H,E | K).



alone in this respect. I know of no arguments (much less, compelling ones) that
have been proposed to demonstrate that d should be preferred over [.

Earman (1992) offers a similar approach to “irrelevant conjunction” which
is less sensitive to choice of measure. Earman’s approach relies only on the
following logically weaker fact about d:

(2 If H = E, then d(H& X, E| K) < d(H, E| K).

Both the log-likelihood ratio measure ! and Carnap’s relevance measure t sat-
isfy (2’) (proofs omitted); but, the log-ratio measure r does not satisfy (2')
(see § 3.1). So, while still sensitive to choice of measure, Earman’s “irrelevant
conjunction” argument is less sensitive to choice of measure than Rosenkrantz’s.

2.3 Eells on the Grue Paradox

Eells (1982) offers a resolution of the Grue Paradox which trades on the fol-
lowing property of the difference measure d (where 8 =g Pr(H; & E|K) —
Pr(Hy& E | K), and § =4 Pr(H, & E | K) — Pr(H, & E | K)).

(3)  If3>dand Pr(E|K) < % then d(Hy, E| K) > d(H,, E | K).

As usual, T will skip over the details of Eells’s proposed resolution of Goodman’s
“new riddle of induction.” What is important for our purposes is that (3) is not
a property of either the log-likelihood ratio measure ! or the log-ratio measure
r, as is illustrated by the proof of the following theorem:

Theorem 3. Neither r nor | has the property expressed in (3).°

As a result, Eells’s resolution of the Grue Paradox (which is endorsed by
Sober (1994)) only works if one assumes that the difference measure d is to
be preferred over the log-likelihood ratio measure ! and the log-ratio measure
r. Eells (pers. comm.) has described a possible reason to prefer d over r (this
argument against r is discussed in § 3.2). As far as I know, Eells has offered no
argument aimed at showing that d is to be preferred over [.

2.4 Horwich et al. on Ravens and the Variety of Evidence

A great many contemporary Bayesian confirmation theorists (including Horwich
(1982)) have offered quantitative resolutions of the Ravens paradox and/or the
problem of varied (or diverse) evidence which trade on the following relationship
between conditional probabilities and relevance measures of confirmation.!?

(4) If Pr(H|E1 & K) > Pr(H | Ey & K), then ¢(H, By | K) > ¢(H, Ey | K).

9 Tt is easy to show that both (2) and (3) do hold for Carnap’s v (proofs omitted).
10An early quantitative resolution of the Ravens Paradox was given by Hosiasson-
Lindenbaum (1940). Hosiasson-Lindenbaum was not working within a relevance framework.
So, for her, it was sufficient to establish that Pr(H | E1 & K) > Pr(H | E2 & K), where E; is a
black-raven, F is a non-black non-raven, H is the hypothesis that all ravens are black, and K
is our background knowledge. Contemporary Bayesian relevance theorists have presupposed

As it turns out (fortuitously), all three of the most popular contemporary rele-
vance measures d, v, and [ share property (4) (proofs omitted). But, Carnap’s
relevance measure t does not satisfy (4), as the proof of Theorem 4 shows.

Theorem 4. t does not have the property expressed in (4).11

Until we are given some compelling reason to prefer d, r, and ! to Car-
nap’s t (and, to any other relevance measures which violate (4)—see fn. 11 and
Appendix §D for further discussion), we should be wary about accepting the
popular quantitative resolutions of the Ravens Paradox, or the recent Bayesian
accounts of the confirmational significance of evidential diversity.!?

2.5 An Important Theme in Our Examples

As our examples illustrate, several recent Bayesian confirmation theorists have
presupposed the superiority of the difference measure d over one or more of the
three alternative relevance measures r, [, and t. Moreover, we have seen that
many well-known arguments in Bayesian confirmation theory depend sensitively
on this assumption of d’s superiority. To be sure, there are other arguments
that fit this mold.!> While there are some arguments in favor of d as opposed
to r, there seem to be no arguments in the literature which favor d over the
alternatives [ and tr. Moreover, as I will show in the next section, only one
of the two popular arguments in favor of d as opposed to r is compelling. In
contrast, several gemeral arguments in favor of r, [, and t have appeared in
the literature.'* It is precisely this kind of general argument that is needed to
undergird the use of one particular relevance measure rather than any other.
In the next section, I will examine two recent arguments in favor of the
difference measure d as opposed to the log-ratio measure r. While one of these
arguments seems to definitively adjudicate between d and r (in favor of d), T will

that this inequality is sufficient to establish that a black raven incrementally confirms that all
ravens are black more strongly than a non-black non-raven does. As Theorem 4 shows, this is
true for only some relevance measures. This same presupposition is also made by Bayesians
who argue that (ceteris paribus) more varied sets of evidence (F1) confirm hypotheses (H)
more strongly than less varied sets of evidence (E2) do. See Earman 1992, 69-79 for a survey
of recent Bayesian resolutions of the Ravens Paradox, and Wayne 1995 for a survey of recent
Bayesian resolutions of the problem of evidential diversity. As far as I know, all of these
popular contemporary approaches are measure sensitive in the sense described here.

I There are other relevance measures which violate (4). Mortimer (1988, §11.1) shows that
the measure Pr(E |H & K) — Pr(E| K) violates (4). It also turns out that Nozick’s (1981,
252) measure Pr(E | H & K) — Pr(E | H & K) violates (4). See Appendix §D for proofs.

12See Fitelson 1996 and Wayne 1995 for independent reasons to be wary of Horwich’s (1982)
account of the confirmational significance of evidential diversity.

13Kaplan (1996) offers several criticisms of Bayesian confirmation theory which presuppose
the adequacy of the difference measure d. He then suggests (76, fn. 73) that all of his criticisms
will also go through for all other relevance measures that have been proposed in the literature.
But, one of his criticisms (84, fn. 86) does not apply to measure 7.

M Milne (1996) argues that r is “the one true measure of confirmation.” Good (1984),
Heckerman (1988), and Schum (1994) all give general arguments in favor of I. And, Carnap
(1962, §67) gives a general argument in favor of t. In Fitelson (1998b), I discuss each of these
arguments in some depth, and I provide my own argument for the log-likelihood ratio .



argue that neither of them will help to adjudicate between d and [, or between
d and v. As a result, defenders of the difference measure will need to do further
logical work to complete their enthymematic confirmation-theoretic arguments.

3 Two Arguments Against r

3.1 The “Deductive Insensitivity” Argument Against r
Rosenkrantz (1981) and Gillies (1986) point out the following fact about r:

(5) If H = FE, then r(H,E|K) =r(H&X, F|K), for any X.

Informally, (5) says that, in the case of deductive evidence, r(H,E|K) does
not depend on the logical strength of H. Gillies (1986) uses (5) as an argument
against r, and in favor of the difference measure d. Rosenkrantz (1981) uses (5)
as an argument against r, but he cautiously notes that neither d nor [ satisfies
(5). It is easy to show that t doesn’t have property (5) either (proof omitted).

I think Gillies pinpoints what is so peculiar and undesirable about (5) quite
well, when he explains that

On the Bayesian, or, indeed, on any inductivist position, the more a hy-
pothesis H goes beyond [deductive] evidence E, the less H is supported
by E. We have seen [in (5)] that r lacks this property that is essential for
a Bayesian measure of support. (1986, 112; my brackets)

I agree with Gillies and Rosenkrantz that this argument provides a rather com-
pelling reason to abandon r in favor of either d or [ or v.*® But, it says nothing
about which of d, [, or v should be adopted. So, this argument does not suffice
to shore-up all of the measure sensitive arguments we have seen. Hence, it does
not constitute a complete resolution of the problem of measure sensitivity.

3.2 The “Unintuitive Confirmation” Argument Against r

Several recent authors, including Sober (1994) and Schum (1994), have criti-
cized r on the grounds that r sanctions “unintuitive” quantitative judgments
about degree of confirmation in various (hypothetical) numerical examples.'®
For instance, Sober (1994) asks us to consider a hypothetical case involving a
single collection of evidence F, and two hypotheses H; and Hs (where, K is
taken to be tautologous, and is thus suppressed) such that:

15There are lots of compelling reasons to reject r. For instance, note that, according to 7, the
degree to which E confirms H need not be the same as the degree to which E disconfirms H.
That is, there are cases in which 7(H, E| K) # —r(H, E | K). This sort of asymmetry is highly
unintuitive, and is not shared by any of the other relevance measures under consideration.

163ober (1994) borrows this line of criticism from Ellery Eells. Eells (pers. comm.) has
voiced numerical examples of various kinds to illustrate the “unintuitive” consequences of r.
I have chosen the present example because I think it is representative of the kind of examples
these authors seem to have in mind.

Pr(H,|E)=0.9 Pr(H;) = 0.09
Pr(H, | E) = 0.0009 Pr(H,) = 0.00009

In such a case, we have the following pair of probabilistic facts:

d(Hy, E) = 0.81 > d(Hs, E) = 0.00081
(1) r(Hy, E) =1og(10) = r(Hs, E)

It is then argued, by proponents of d, that () exposes a highly “unintuitive”
feature of r, since this is case in which— “intuitively”—F confirms H; to a
greater degree than E confirms Hjy. But, according to r, E confirms both H;
and H; to exactly the same degree. Therefore, this example is purported to
rule out r (but not d, since d gets the “intuitively correct” answer here).

I am not too worried about (f), for two reasons. First, (f) can be only a
reason to favor the difference measure over the ratio measure (or vice versa'?);
it has little or no bearing on the relative adequacy of either [ or v. It is clear
from the definitions of the measures that Carnap’s v is bound to agree with
d’s “intuitive” answer in such cases. Hence, t is immune from the “unintuitive
confirmation” criticism. Moreover, the log-likelihood ratio measure [ certainly
could agree with the “intuitively” correct judgments in such cases (depending on
how the details needed to fix the likelihoods get filled-in). Indeed, Schum (1994,
Ch. 5) argues nicely that the log-likelihood ratio measure [ is largely immune to
the kinds of “scaling effects” exhibited by r and d in (}). Unfortunately, neither
Eells nor Sober (1994) nor Schlesinger (1995) considers how the measures | and
v might cope with their alleged counter-examples.

Second, there seems to be little or no independent support offered for the
crucial premise of this argument. The argument is persuasive only if it is granted
that the intuitive degree to which E confirms H; is greater than the intuitive
degree to which E confirms Hy. The only reason that I have seen offered in
support of this claim (e.g. Sober (1994)) is that d(H;, E) > d(Hz, E). But, this
just seems to beg the question; it simply presupposes that the intuitive amount
to which E confirms H s accurately gauged by the difference measure, and not
by the ratio measure (or, by some other measure altogether). What we need
here are independent reasons for believing precisely this!

4 Summary of Results

We have discussed three measure sensitive arguments which are aimed at show-
ing that certain relevance measures are inadequate, and we have seen four mea-

171t has been argued by Schlesinger (1995) that parallel arguments can be run “backward”
against d and in favor of r. Schlesinger (1995) describes a class of examples in which the
difference measure seems to give the “unintuitive” answer (and, where the key probabilistic
facts are analogousto (1)). Schlesinger’s examples drive home the point that the philosophical
conclusions one draws from hypothetical, numerical examples of these kinds will depend
crucially on what one takes the “intuitive” answers to be in the first place. See below.



sure sensitive arguments which presuppose the superiority of certain relevance
measures over others. Table 1 summarizes the arguments which presuppose that
certain relevance measures are superior to others, and Table 2 summarizes the
arguments against various relevance measures. These tables serve as a handy
reference on the measure sensitivity problem in Bayesian confirmation theory.

Is A valid wrt the measure:

Name and Section of Argument A d? r? 7 t?
Rosenkrantz on “Irrelevant Conjunction”
(See §2.2 and Appendix §B for discussion) YES No No YES
Earman on “Irrelevant Conjunction”
(See §2.2 for discussion) YES No | YES | YES
Eells on the Grue Paradox
(See §2.3 and Appendix §C for discussion) YES No No YES
Horwich et al. on Ravens & Variety
(See §2.4 and Appendix §D for discussion) YES YES YES No

Table 1: Four arguments which presuppose the superiority of certain measures.

Is A valid wrt the measure:

Name and Section of Argument A d? r? 7 t?
Gillies’s Popper-Miller Argument
(See §2.1 and Appendix §A for discussion) YES No No YES
“Deductive Insensitivity” Argument
(See §3.1 for discussion) No YES No No
“Unintuitive Confirmation” Argument
(See §3.2 for discussion) No | Yes!® | No No

Table 2: Three arguments designed to show the inadequacy of certain measures.

18 As T explain in § 3.2, T do not think this argument is compelling, even when aimed against
r. But, to be charitable, I will grant that it is, at least, valid when aimed against .

5 Conclusion: Where Do We Go From Here?

In the present paper, I have shown that many well-known arguments in quan-
titative Bayesian confirmation theory are valid only if the difference measure d
is to be preferred over other relevance measures (at least, in the confirmational
contexts in question). I have also shown that there are compelling reasons to
prefer d over the log-ratio measure . Unfortunately, like Rosenkrantz (1981), I
have found no compelling reasons offered in the literature to prefer d over the
log-likelihood ratio measure [ (or Carnap’s relevance measure t). As a result,
philosophers like Gillies, Rosenkrantz, and Eells, whose arguments presuppose
that d is preferable to both [ and v, seem compelled to produce some justification
for using d, rather than either [ or t, to measure degree of confirmation.*?

In general, there seem to be two viable strategies for coping with the problem
of measure sensitivity. The first strategy is to simply avoid the problem entirely,
by making sure that one’s quantitative confirmation-theoretic arguments are
robust (i.e. insensitive to choice of measure of confirmation).?? On the other
hand, if plausible robust arguments can not be found in some context, then
one should feel compelled to give reasons why one’s chosen relevance measure
(or class of relevance measures) ¢* should be preferred over other relevance
measures, the use of which would render one’s argument invalid.?!

19In Fitelson 1998b, I argue that this will be a difficult task, since there are some rather
strong arguments in favor of | and against d.

20This can be done in some contexts (e.g., in Fitelson 1998a, I outline a new, robust Bayesian
resolution of the problem of evidential diversity, and Maher (1999) gives a new, measure
insensitive Bayesian resolution of the Ravens Paradox, based on Carnapian inductive logic);
but, I doubt that plausible, robust quantitative Bayesian accounts can always be found.

211deally, it would be nice to see general, desideratum/explicatum arguments which rule
out all but a relatively small class of ordinally equivalent measures of confirmation (i.e.,
arguments like those given by Carnap (1962, §67), Good (1984), Heckerman (1988), and
Milne (1996)). Such arguments would also have the virtue of contributing in a substantive
way to the theoretical underpinning of quantitative Bayesian confirmation theory.

10



Appendix

A Proof of Theorem 1
Theorem 1. There exist probability models such that
I(HE|K)#I(HVE,E|K)+I(HV E,E|K).

Proof. For simplicity, I will assume that the background knowledge K consists
only of tautologies. Then, by the definition of I, we have the following

WH Y B, BE|K)+(HV B, B|K) = log | NELHVE) | o | PrEIH Y E)
LPr(E[HV E)] Pr(E|H VE)
1o 'Pr(E\HVE)'_HO [Pr(E|HVE)
T ® | PE|H&E)| T ®|PiE|H&E)
g Pr(E\éLIVE) o Pr(E\fIVE)
= 400

#I(H,FE | K), provided that I[(H, E| K) is finite.

There are lots of probability models of this kind in which I(H, F'| K) is finite.
Any one of these is sufficient to establish the desired result. d

B Proof of Theorem 2

Theorem 2. There exist probability models in which all three of the following
obtain: (i) H = E, (i) r(H& X, E|K)#Pr(X |H&K) -r(H,E| K), and
(iii) (H& X, E|K) # Pr(X |H& K) - I(H,E| K).??

Proof. Let K include the information that we are talking about a standard
deck of cards with the usual probability structure. Let E be the proposition
that some card C, drawn at random from the deck, is a black card (i.e., that C
is either a & or a #). Let H be the hypothesis that C is a #. And, let X be the
proposition that C is a 7. Then, we have the following salient probabilities:

PrX|H&K) = 15 Pr(H|E&K) =4 Pr(H|K) =1

Pr(E|H& X &K) =1 Pr(E|H&K) =1 Pr(E|H&K) =3

Hence, this probability model is such that all three of the following obtain:

(4) HEE

r(H&X,E|K) = log {%}
(i) = log(2)

LPr(X|H&K) r(H,E|K) = 1—13~10g(2)

1

(iii) _ log B_;]

£Pr(X|H&K) I(H,B|K) = lig.log(s)

Consequently, this probability model is sufficient to establish Theorem 2. O

C Proof of Theorem 3

Theorem 3. There exist probability models in which all three of the following
obtain: (i) 3> 0 and Pr(E|K) < i, (ii) ((H,E|K) < l(H2, E| K), and
(iii) r(H1,E| K) < r(H2, E| K).?3

Proof. 1 will prove Theorem 3 by describing a class of probability spaces in

which all four of the following obtain.?*

(%) E confirms both H; and H (given K)
(i) 3> 6 and Pr(E|K)<%

(i1) I(Hi,E|K)<I(Hs,E|K)

(ii1) r(Hi,E|K) <r(Hs, E|K)

To this end, consider the class of probability spaces containing the three events
E, Hy, and Hj (here, we take K to be tautologous, for simplicity) such that the
eight basic (or, atomic) events in the space have the following probabilities:

Pr(H& X | K) = &

PrH& X |E&K) = & | Pr(E|HEX & K) =2

22 Strictly speaking, this theorem is logically stronger than Theorem 2, which only requires
that there be a probability model in which (¢) and (i) obtain, and a probability model in
which (¢) and (%) obtain (but, not necessarily the same model). Note, also, that the X in
my countermodel is, intuitively, an irrelevant conjunct. I think this is apropos.

11

28Where 3 and § are defined as follows: 8 =4 Pr(H1& E|K) — Pr(H, & E|K), and
§ =qf Pr(H1 & E|K) — Pr(H2 & E|K). And, as was the case with Theorem 2 above (see
fn. 22), this theorem is, technically, logically stronger than Theorem 3.

241t crucial that our countermodel be such that (*) obtains. For instance, if we were to
allow E to confirm Ho but disconfirm Hy, then “counterexamples” would be easy to find, but
they would not be a problem for Eells’s resolution of the Grue Paradox, since Eells is clearly
talking about cases in which E (the observation of a large number of green emeralds, before
to) confirms both H; (that all emeralds are green) and Hs (that all emeralds are grue).

12



Pr(Hi& Ho& E)=a= 1% | Pr(Hi& H2 & E) =b = &5
Pr(H & Hy & E)=c=4& | Pr(Hi& Hy & E) =d = 2L
Pr(Hi& Ho & E) =e=5 | Pr(Hi&H & E) =f =55
Pr(Hi & Hy& E) =g = 2% | Pr(H1 & Hy & E) =h = &I

Now, we verify that the class of probability spaces described above is such that
(%), (3), (21), and (74) all obtain. To see that (x) holds, note that we have both
Pr(Hy | E) > Pr(Hy), and Pr(Hz | E) > Pr(Hs).

d+e 61
e+ f 5
Pr(Hy)=a+b+d+e 121 0.2631
r —_ —N .
! ~ 1600
Pr(Hg):b+c+e+f:%:O.l975
To see that (i) holds, note that Pr(E) < 1.
3
Pr(E )_d+e+f+g—§—0375
And, that Pr(H, & E) — Pr(Ha & E) > Pr(H, & E) — Pr(Hy & E) (i.e. > 6).
11
=d—-f=—~0.0344
s 320 0-03
1
0d=a—c=—~0.0313

Next, we verify that (i¢) holds in our example (i.e. [(Hy, E) < [(Hz, E)).

1-a—b-d—e) (d+e) 71919

= — | ~ log(2.
Gatbtdte) (f+g) 2ag39 )~ 108(2:89)
1-b-c—e—f)(etf) 1605

=1 —— | = log(2.902
(btctetf) (d+g) 553 08(2.902)

Finally, we verify that (i77) holds in our example (i.e. r(Hy, E) < r(Hs, E)).

dte 2440
Hy,E) =1 —log (2220 ) ~ log(1.932
r(th, ) Og{(a—i—b-ﬁ-d-ﬁ-e) (d+e+f+g)} Og<1263> 05(1.932)

e+ f 500
Ha E) =1 —log (22 ~log(2.11
r(Hz, B) Og{(b—l—c—l—e—l—f) (d+e+f+g)} Og<237> 0g(2:110)

This completes the proof of Theorem 3. 0

I(H,,E) = log {(

I(Hs, E) = log {(

13

D Proof of Theorem 4

Theorem 4. There exist probability models in which both of the following ob-
tain: (i) Pr(H |E1 & K) > Pr(H | Ex& K), and (i) v(H, B | K) <t(H, FEy | K).

Proof. 1 will prove Theorem 4 by describing a class of probability spaces in
which all three of the following obtain.??

(*) Each of E; and Fs confirms H (given K)
(4) Pr(H|E1 & K) > Pr(H |E2& K)
(“) t(FI7E‘1|[()<t(PI7E‘2|[()

To this end, consider the class of probability spaces containing the three events
Ey, Es, and H (again, we take K to be tautologous, for simplicity) such that
the eight basic (or, atomic) events in the space have the following probabilities:

Pr(By&Ey& H) =a= 1555 | Pr(B1 & B2 & H) =b = 1355
Pr(E1&Ey& H) =c= 55 | Pr(E1 & E2& H) =d = ;5
Pr(E1 & Fa&H)=e= 155 | Pr(E1&Ey&H)=f= 5
Pr(E & Ex&H) =g =< | Pr(E1 & Ea & H) = h = 33

Now, we verify that the class of probability spaces described above is such that
(*), (¢), and (ii) all obtain. To see that (x) and (i) both hold, note that we
have Pr(H | Eq) > Pr(H), Pr(H | E2) > Pr(H), and Pr(H | Eq) > Pr(H | E»):

d+e 10
e+f 25
Pr(H|Ey) = ——— = — =~ 0.893
MH B = e 7 s
1
Pr =d f = = 0.062
(Hy=d+e+f+g= =00
And, to see that (ii) holds, note that v(H, E1) < v(H, E5).2°
d+te 4659
e+ f 727
(H EQ) (b+C+E+f) {m (d+e+f+g)} M =~ 0.0465
This completes the proof of Theorem 4, as well as the Appendix. 0

251t is important that our countermodel satisfy (). In the ravens paradox, it should be
granted that both a black raven (E7) and a non-black non-raven (E3) may confirm that all
ravens are black (H). Similarly, it should be granted that both a “varied” (or “diverse”) set
of evidence (F1) and a “narrow” set of evidence (E2) can confirm a hypothesis under test
(H). Wayne (1995) presents a “counterexample” to Horwich’s (1982) Bayesian account of
evidential diversity which fails to respect this constraint. See Fitelson 1996 for details.

26This is also a model in which both Pr(E; | H) — Pr(FE;) < Pr(Es|H) — Pr(E3), and
Pr(Ey|H) — Pr(E1 | H) < Pr(Es | H) — Pr(E2 | H) (check this!). So, the relevance measures
of both Mortimer (1988, §11.1) and Nozick (1981, 252), respectively, also violate (4).
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